The nickel-based superalloys have improved creep strength with the addition of rhenium. The alloys normally contain 3% or 6% of rhenium.[40] Second generation alloys contain 3%; these alloys were used in the engines of the F-16 and F-15, while the newer single-crystal third generation alloys contain 6% of rhenium; they are used in the F-22 and F-35 engines.[39][41] Rhenium is also used in the superalloys, such as CMSX-4 (2nd gen) and CMSX-10 (3rd gen) that are used in industrial gas turbine engines like the GE 7FA. Rhenium can cause superalloys to become microstructurally unstable, forming undesirable TCP (topologically close packed) phases. In 4th and 5th generation superalloys, ruthenium is used to avoid this effect. Among others the new superalloys are EPM-102 (with 3% Ru) and TMS-162 (with 6% Ru), both containing 6% rhenium, [42] as well as TMS-138[43] and TMS-174.[44][45]